
Cosmos Db
Azure Distributed Document Database

About the Presenter

• Clarke D. Bowers

• Clarke Bowers Consulting, LLC

• http://www.cbsoftwareengineering.com/

• mailto: clarke@cbsoftwareengineering.com

• 35 years of industry experience

• He has architected and developed embedded
systems, desktop applications, enterprise data
warehouses, web sites and web services; cloud
bases and locally hosted solutions

• He holds six patents

You can find this presentation and
all the examples at:
https://1drv.ms/f/s!Ar3pO7_GhJY9
hP0KTTVe-Hn-gBpu0w

http://www.cbsoftwareengineering.com/
mailto:clarke@cbsoftwareengineering.com
https://1drv.ms/f/s!Ar3pO7_GhJY9hP0KTTVe-Hn-gBpu0w

Agenda

• Main focus: Document Databases and No SQL

• Define Cosmos DB

• Compare to SQL Server

• Investigate MongoDb features & API

• Learn to query & store

• Compare document and relational models

• Learn about sharding & geo-distribution

• See demo of IoT application

• Review Azure function from demo

COSMOS DB Application: Tidal Probe

• Mount Raspberry Pi, GPS,
sensors and batteries on buoy

• Measure location, linear
acceleration, angular
acceleration, temperature and
barometric pressure

• Transmit to Azure & store in
Cosmos DB

Application for harbor pilots. It tracks the cargo ships location and view latest buoy data with
PowerBI for nearby buoys. Displays on map the microclimate marine conditions.

What is Cosmos DB?

• I have not validate these claims and features

• Availability and latency guaranteed

• Automatic indexing tuning

• Encryption

• Backups

• First-Class Citizen of Azure

• Subscription maybe based on it

• Formerly known as DocumentDb

• No Schema (schema-less)

• Sharded

• Globally Distributed

• Document Database

• API (MongoDb API in my examples)

• No SQL (SQL-less) (mostly…)

• Server-less

• Replicated

Storage Hierarchy

SQL Server

• Windows Server or Cluster

• SQL Server Instance

• Database

• Schema (namespace)

• Table (Indexes, Keys, Relationships)

• Tuple (row)

Cosmos DB as MongoDb

• Azure Subscription (billing)

• DB account (like a server but not singular in
location or compute power) (mostly defines
storage)

• Database (mostly a namespace)

• Collection (a cross between a table and a star
schema, also the unit of computing) (a.ka.
Container)

• Document (more than a tuple)

Container

• When you create the Cosmos DB account, you
must select the contents of the containers.

• All container hold the same type of data
repository for the Cosmos DB account

• MongoDB for document data

• This is what I will demo in this presentation

• Gremlin for graph data

• Azure Table

• Cassandra

• Core SQL (preview)

MongoDb API

• Cosmos DB is wire compatible with the
MongoDb protocol

• MongoDb API can be found here
(http://api.mongodb.com/)

• Supports many languages including: C++, C#,
JavaScript and Python

• Cosmos DB supports other APIs

• Choice is made at instance creation to
match containers

• Cosmos DB has it’s own .NET API

• Version 3.0 preview

• Compatible with .NET Core

• Does not work yet

• Version 2.0

• Requires full framework

http://api.mongodb.com/

Python & MongoDB
• Cosmos DB supports the wire protocol for MongoDb API

• Pymongo is a package for Python that generate the wire
protocol for MongoDB API

• Install with: python -m pip install pymongo –user

• Latest version 3.7.2

• Connect to a Cosmos DB account

• Access the “wave” database

• Access the “Sensor” document collection

• Count the documents

• Select the most recent three documents

• Equivalent SQL statement

• SELECT TOP 3 * FROM [wave].[Sensor] ORDER BY
[When] DESC

import pymongo;

import pprint;

#connect to the server

mongoClient = pymongo.MongoClient('mongodb://…');

#grab the wave database

db = mongoClient.wave;

#grab the sensor document collection

sensorDocs = db.Sensor;

print(sensorDocs.count());

#find the most recent three documents and display them

cursor = sensorDocs.find().sort([('When', -1)]).limit(3)

for doc in cursor : pprint.pprint(doc);

Document Creation
• Check for testdb

• Access creates the DB when a document is
added to a collection

• Access creates the collection when a document
is added

• Add a document

• All documents receive an ID field automatically

• The name is _id

• Warning: default RU/s is 1,000

• Request Units

• This cost $60 per month for one collection!

#check if the DB exits and access it

dblist = mongoClient.list_database_names()

if "testdb" in dblist:

print("The testdb database exists.")

testDb = mongoClient["testdb"];

testCollection = testDb["testCollection"]

print(testCollection.count());

testDocument = { "name": "John", "address":
"Highway 37" }

id = testCollection.insert_one(testDocument)

print(id)

Criterion

• Find method on the collection object first
parameter is the criteria

• Criteria is an JSON object

• Case sensitive equality

• Equivalent SQL statement

• SELECT TOP 1 * FROM [wave].[Sensor]
WHERE MachineName = “MINIWINPC”

mongoClient =
pymongo.MongoClient('mongodb://…);

db = mongoClient.wave;

sensorDocs = db.Sensor;

doc = sensorDocs.find(

{ "MachineName" : "MINWINPC" }

).limit(1)[0]

pprint.pprint(doc);

Embedded Document
Query

• Return document from field nested to any depth

• Dot canonical notation

• Operators are abbreviations and not symbols

• find_one returns the first matching document

• WITH forces AS (
SELECT [ForceId] FROM [wave].[Sensor] WHERE Mean > 0.1)

SELECT TOP 1 * FROM [wave].[Sensor]
WHERE ForceId In (SELECT ForceId FROM force)

#find the one document with a

force mean greater than 0.1

doc = sensorDocs.find_one(

{ "Force.Mean": { "$gt": 0.1 } })

pprint.pprint(doc);

Projections

• Selection of fields is done with the second parameter to the
find method

• The project is another JSON object

• WITH forces AS (
SELECT [ForceId] FROM [wave].[Sensor] WHERE Mean > 0.1)

SELECT TOP 1 [MachineName], [When] FROM [wave].[Sensor]
WHERE ForceId In (SELECT ForceId FROM force)

#find the one document with a

force mean greater than 0.1

doc = sensorDocs.find_one(

{ "Force.Mean": { "$gt": 0.1 } },

{ "MachineName", "When"})

pprint.pprint(doc);

Relational Entity
Modeling

• ERD for a checking application

• Checks table is an intersection
between Accounts and Payees

• State is an enumeration including
PENDING, WRITTEN and
CLEARED

Document Database

• MongoDB API works with BSON documents

• BSON is MongoDB’s binary-encoded-version of JSON

• BSON extends the JSON model with additional
language feature support

• E.g. dates

• Cosmos DB only supports standard JSON

• Note that one document collection encompasses four
relational tables: Bank, Account, Payee and Check.

• Documents do not need to have consistent structure
within the collection

• ISO8601 dates are not supported

{ "Date": "2019-04-11T12:17:05.5152519-04:00",

"State": "Pending",

"CheckNunmber": 101.0,

"Amount": 100.02,

"Memo": "Testing",

"Payee": { "Name": "Fred Smith“ },

"Account": {

"NickName": "BOA Joint Checking",

"StatementName": "John and Jane Doe",

"AccountAddressLine1": "100 West St.",

"AccountNumber": "57C0A50A08",

"Bank": {

"Name": "Bank Of America, NA",

"BankAddressLine1": "Baltimore, MD 21215",

"AbaRoutingNumber": "F7CC0F065"

} } }

Embedded &
Referenced

• MongoDb supports both embedded and
referenced data

• Relational databases only support referenced

• XML columns are an outlier

• Embedded is great for low cardinality of
relationship

• Customers to phone numbers

• Referenced is best for high cardinality

• Products intersects Customers via an Orders
tables.

• When historic information is important
embedded is better

• If you need the product description at the time of
purchase, then embed product in order

.NET Insert

• Add nugget package MongoDb.Driver

• Connect to Cosmos Db using the MongoClient

• Get database and then collection

• Insert a document

• Document is a hierarchy of POCO objects

• Similar to Entity Framework

//connect to mongo DB

string connectionString =

GetEnvironmentVariable("MongoDb");

var settings = MongoClientSettings.FromUrl(

new MongoUrl(connectionString));

settings.SslSettings = new SslSettings()

{ EnabledSslProtocols = SslProtocols.Tls12 };

var mongoClient = new MongoClient(settings);

//get the database and do some mappings

var checkbook = mongoClient.

GetDatabase(DatabaseId);

var documentCollection = checkbook.

GetCollection<Check>(CollectionId);

documentCollection.InsertOne(newCheck);

Object ID

• Primary Key

• Mongo DB BSON requires a field named _id

• C# attribute [BsonId] is valid declaration

• Cross collection projects (joins) can only be
done with object ID

• A byte array

• GUID work just fine

• Defaults to 12-bytes if not specified

• a 4-byte value representing the seconds since
the Unix epoch,

• a 5-byte random value, and

• a 3-byte counter, starting with a random value

{
"_id": ObjectId("58f65e1198f3a12c7090e68c"),
"id": "WakefieldFamily",
"parents": [{

"familyName": "Wakefield",
"givenName": "Robin"

},

Upsert

• Replace() entire document

• Update() portions of document

• Upsert is option on both commands

• Performs insert if no match

• Equivalent SQL DML
UPDATE [testdb].[Checkbook].[Checks]

SET [State] = 4
WHERE [CheckId] = 5

var documentCollection = checkbook.

GetCollection<Check>(CollectionId);

var filter = Builders<Check>.

Filter.Eq(c => c.Id, clearedCheck.Id);

var update = Builders<Check>.

Update.Set(c => c.State, clearedCheck.State);

var result = documentCollection.

UpdateOne(filter, update);

Geo-distributed Database

Buoy Customer and Data Center
Location

Chesapeake Bay, East Coast 2

Tokyo Bay, Japan East

Manilla Bay, South East Asia

DB Account Creation
• Add a resource to your Azure

subscription

• Name must be unique

• Must choose the container content
& API

• Select storage methodology

Execution Geo-
distribute

• Traffic routing to single DNS across
data centers and computational
machines

• Traffic is routed to closest data
center automatically

• Claim: 99.999% read and write
availability all around the world

Data Center

• Can embed data center in connection string

• Local Distribution: In a given region, data within a
container is distributed by using a partition-key, which
you provide and is transparently managed by the
underlying physical partitions

• Global Distribution: Each physical partition is also
replicated across geographical regions

Replica
Distribution

• Replica-sets, a modular Lego block
for coordination

• Partition-sets, a dynamic overlay of
one or more geographically
distributed physical partitions

• Claim: Unlimited elastic write and
read scalability

• Claim Guaranteed reads and writes
served in less than 10 milliseconds
at the 99th percentile

Concurrency
Models

• Similar to SQL Server

• TRANSACTION ISOLATION LEVEL

• Affects replica’s communications

• Works across all container types

• Conflict Resolution: Last Write Wins (by time)

• Five consistency models

• Only directly selectable via Cosmos DB API

• MongoDb read-write-concerns are mapped to
consistency model

Consistency
Model

Read Write

Strong Complete
latest data

In order across
sessions

Bounded
Staleness

Read can max
k-versions
back and T-
time back

Force writes
before point

Session Session latest
data

In order for
session

Consistent
prefix

Nothing out of
order, but as-
of certain point
in the past

Force writes
before point

Eventual Catch-as-
catch-can

Eventually
replicate are
the same

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels-across-apis

Data Source: Bobble Head
Santa

• Mount Raspberry Pi on a bobble head Santa.

• Place an inertial measurement unit in Santa’s head.

• Send data to IoT Hub

• Use gyroscope & accelerometer to determine when the
head is bobbing.

• Simulate wave motion with bobble head.

Gyrosc
ope

Accelerometer

Data Flow

From device to Cosmos DB and reporting
PowerBI adapter is still beta and does not work

 Cosmos DB
Sensor document

collection
IoT Hub Service Bus

Power BI

Raspberry Pi
Wave sensor

Azure
Function

A
zu

re

R-Language
ggplot

 Cosmos DB
Sensor document

collection
IoT Hub Service Bus

Power BI

Raspberry Pi
Wave sensor

Azure
Function

A
zu

re

R-Language
ggplot

Azure Function

• Automatically invoked on blocks of service bus data

• Performs batch insert of MongoDb BSON documents
into Cosmos DB

• Beware of exceeding RU/s limit

• Receive uncategorized error

[FunctionName("HubServiceBus")]

public static void Run(

[EventHubTrigger("wavehub", Connection = "WaveHub")]

string hubMessage, TraceWriter log)

{…}

…

/* Look for too much load

A write operation resulted in an error.

Message: { "Errors":["Request rate is large"]}

ActivityId: …, */

if (ex.WriteError != null &&

ex.WriteError.Code == Uncatorgized &&

ex.WriteError.Message.Contains("Request rate is large"))

{

log.Warning($"Request rate is large. Sleeping: {sleepTime}.");

…

R Language
• Mongolite is an excellent R-library that works with Cosmos DB

• Ggplot2 is a library that plots data

• install.packages('mongolite') & include.packages('ggplot2') is VS

• MongoDb uses periods for nested fields

• R language uses dollar sign for nested fields

library(mongolite)

library(ggplot2)

mgo <- mongo(db = "wave", collection = "Sensor",

url="mongodb://…")

lastMin = Sys.time() - (60 * 1) #latest minute of data

query = paste('{ "When" : { "$gte" : { "$date" : "',

format(lastMin, "%Y-%m-%dT%H:%M:%SZ", 'UTC'), '"} } }',

sep = "")

recent = mgo$find(query,

field = '{ "When": true, "MachineName" : true,
"Angles.Absolute.X" : true }' ,

limit = 100)

ggplot(recent, aes(x = When, y = Angles$Absolute$X)) +

geom_line(aes(group = 1), size = 2, color = "red") +

scale_x_datetime(date_labels = "%H:%M:%S")

Conclusions

• Best Uses for Cosmos DB Today

• Geographically distributed applications

• Low cost to start acquiring document data

• When data format will evolve

• Retrieval speed across very large data is important

• Must be able to handle high cost of data mining development

Useful Links

• Cosmos DB documentation home
https://docs.microsoft.com/en-
us/azure/cosmos-db/

• Cosmos DB API
https://docs.microsoft.com/en-
us/dotnet/api/overview/azure/cosmosdb?view
=azure-dotnet

• Theory of Cosmos DB Engine
https://www.vldb.org/pvldb/vol8/p1668-
shukla.pdf

• Comparison of mongodb to Cosmos DB
https://db-
engines.com/en/system/Microsoft+Azure+Cos
mos+DB%3BMongoDB

• MongoDb manual
https://docs.mongodb.com/manual/

• Getting started with Cosmos DB
https://www.sqlshack.com/getting-started-
with-azure-cosmos-db-and-mongodb-api/

• JSON/BSON Dates:
https://jira.mongodb.org/browse/CSHARP-
2233

• Cosmos DB support level of MongoDb API
https://docs.microsoft.com/en-
us/azure/cosmos-db/mongodb-feature-
support

https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/cosmosdb?view=azure-dotnet
https://www.vldb.org/pvldb/vol8/p1668-shukla.pdf
https://db-engines.com/en/system/Microsoft+Azure+Cosmos+DB;MongoDB
https://docs.mongodb.com/manual/
https://www.sqlshack.com/getting-started-with-azure-cosmos-db-and-mongodb-api/
https://jira.mongodb.org/browse/CSHARP-2233
https://docs.microsoft.com/en-us/azure/cosmos-db/mongodb-feature-support

