
REDUCING THE ATTACK SURFACE OF
A .NET OWIN WEBSITE

By Clarke Bowers

ABOUT THE
PRESENTER

Clarke D. Bowers

Clarke Bowers Consulting, LLC

http://www.cbsoftwareengineering.com/

mailto: clarke@cbsoftwareengineering.com

35 years of industry experience

Has architected and developed web sites and web
services; public facing and intranet; cloud bases
and locally hosted; You can find this presentation and all

the examples at:

https://tinyurl.com/ybwx4b63

http://www.cbsoftwareengineering.com/
mailto:clarke@cbsoftwareengineering.com
https://tinyurl.com/ybwx4b63

OVERVIEW

OWIN is a .NET alternative to the IIS HTTP pipeline

It gives you explicit control of exposed surface of your web application

It run in a variety of environments: Window Server, Windows EXE, IIS Application, Linux

It optionally supports ASP.NET, Routing and MVC

OWIN defines a standard interface between .NET web servers and web applications.

The goal of the OWIN interface is to decouple server and application, encourage the
development of simple modules for .NET web development, and stimulate the open source
ecosystem of .NET web development tools.

http://owin.org/, http://owin.org/spec/CommonKeys.html and https://docs.microsoft.com/en-
us/aspnet/aspnet/overview/owin-and-katana/an-overview-of-project-katana

http://owin.org/
http://owin.org/spec/CommonKeys.html
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/an-overview-of-project-katana

RECOMMENDED TOOLS

Visual Studio 2017 (Community Edition is free)

Postman (Chrome application)

Fiddler (https://www.telerik.com/fiddler)

Katana (open source implementation of OWIN for .NET)

 https://github.com/aspnet/AspNetKatana/

SQL Server Profiler 2016

https://www.telerik.com/fiddler
https://github.com/aspnet/AspNetKatana/

AGENDA

IAppBuild, Run & Use

File exposure

Routing & REST service

SQL injection

Object-relational mapping (Entity Framework)

OWIN ARCHITECTURE

The Application is your web site or
service

Frameworks are additional (Nuget)
packages

Server is http pipeline and threads

Host is the process space, self-hosted, IIS,
etc…

WEB APPLICATIONS TODAY

HTTP Request/Reply

SPAs (single page applications) make
heavy use of RESTful web services

 Many RESTful services maybe employed for a
single web application

Client side packages like Angular allows
the business logic to move to the client

 Beware of exposing your core intellectual
property

User Agent

Web Server

Request
(Get &
Post)

Reply
(content

Type)

JavaScript

CONSOLE OWIN WEB SITE
Console App (EXE)

.NET Framework

Add nuget packages

 OWIN

 Microsoft.OWIN

 Microsoft.Owin.SelfHost

Add index.html to root

LISTENING, CONSOLE WEB APPLICATION 1
Starts the web application

Listens on port 9000

Web startup class is generic
with Configuration method

Index.html in root is not served

Look at traffic with fiddler

IAppBuilder
 Use, adds a handler class to the

pipeline

 Run, adds a less flexible method

using (Microsoft.Owin.Hosting.WebApp.

Start<WebStartup>(

"http://localhost:9000"))

{

Console.WriteLine(

"Press [enter] to quit...");

…

public class WebStartup {

public void Configuration(

IAppBuilder app) {

FILES, CONSOLE WEB APPLICATION 2
Add additional nuget packages
 Microsoft.Owin.StaticFiles

Create Pages folder and place
index.html in it. Marked as content
& copy.

Web startup class’ Configuration
method add the file server to the
pipeline

Index.html as root is served from
pages folder

Look at traffic with fiddler

https://codeopinion.com/asp-net-
self-host-static-file-server/

var options = new FileServerOptions {

EnableDirectoryBrowsing = false,

EnableDefaultFiles = true,

DefaultFilesOptions = {

DefaultFileNames = { "index.html" } },

FileSystem = new PhysicalFileSystem(

"pages")

};

app.UseFileServer(options);

https://codeopinion.com/asp-net-self-host-static-file-server/

RULES FOR WEB APPLICATION DEVELOPMENT

1. Expose as little as possible. You can always expose more later if required.

2. Do not add code to your site if you do not understand it. Examples are designed to get you
started but those examples not to play it safe.

3. Turn on protection (TLS, authentication, authorization, etc…) as soon as possible. This will effect
negatively developer productivity, but there is rarely time to add it later.

4. Create a non-interactive OS user to execute the site and only grant it the minimum privileges
require to run your site. Generally read and execute on a few directories.

5. Assume whoever will support the application will be less skilled and knowledgeable than you.
Companies spend less on maintenance than initial capital project.

6. Determine if your application will be supported by a software developer or a web master. Use
IIS to give your web master flexibility via configuration.

7. Never add a back-door. They rarely get shut later and often leak more functionality than
intended.

PAGE SERVED

Serves pages from root folder and below from
output directory.

File extension must be part of supported file
type
(http://sourcebrowser.io/Browse/aspnet/Asp
NetKatana/src/Microsoft.Owin.StaticFiles/Con
tentTypes/FileExtensionContentTypeProvider.cs
#13)

You can create your own content type provider
& restrict which pages in the folder

HTTP/1.1 200 OK

Content-Length: 215

Content-Type: text/html

Last-Modified: Wed, 16 May 2018 13:42:35 GMT

ETag: "1d3ed3d462cb757"

Server: Microsoft-HTTPAPI/2.0

Date: Wed, 16 May 2018 17:51:29 GMT

<!DOCTYPE html>

<html lang="en“ xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />

<title>Console Web App 2</title>

</head>

<body>

Hello Console Web App 2

</body>

</html>

http://sourcebrowser.io/Browse/aspnet/AspNetKatana/src/Microsoft.Owin.StaticFiles/ContentTypes/FileExtensionContentTypeProvider.cs#13
http://www.w3.org/1999/xhtml

ROUTING, CONSOLE APPLICATION 3

Directs a request by URL format to code
(a controller)

Add package
Microsoft.AspNet.WebApi.Owin

Add a folder called controllers

Add a controller called MathController

Add HTTP attribute routing to the web
startup

Granting access to code is explicit
 No Default Access to code

public void Configuration(

IAppBuilder app) {

// Configure Web API for self-host.

var config =

new HttpConfiguration();

// Enable attribute based routing

config.MapHttpAttributeRoutes();

app.UseWebApi(config);

ATTRIBUTE ROUTING

Controllers must derive from ApiController

Common Verbs: [HttpDelete], [HttpGet],
[HttpPost], [HttpPut]

Route Prefix: start of the URL path after the
server name

Route: specifies method and optionally
parameters format

Example: Verb must be GET and URL must
contain two doubles

Try URLS: http://localhost:9000/api/math/add/5/30.2 &
http://localhost:9000/api/math/add/hello/30.2

[RoutePrefix("api/math")]

public class MathController :

ApiController

{

[Route("add/{x:double}/{y:double}")]

[HttpGet]

public double Add(double x, double y)

{

return x + y;

}

}

http://localhost:9000/api/math/add/5/30.2
http://localhost:9000/api/math/add/hello/30.2

SQL, CONSOLE APPLICATION 4

ApiController query a SQL Server

Fetches monumental events since user entered date

Substitutes string parameters into criteria of text
bases SQL query
 Does not check contents of string

Try this in postman

http://localhost:9000/api/data/names/01-jan-
2009'%20union%20all%20SELECT%20[name]%20FR
OM%20[WebAppDatabase4].[sys].[Tables]%20wher
e%20''%20=%20‘

And this

http://localhost:9000/api/data/names/01-jan-
2009'%20union%20all%20SELECT%20CONCAT([Exe
cutive],%20'-',%20[Compensation],%20'-
',%20[Amount])%20FROM%20[WebAppDatabase4].[
dbo].[ExecutiveCompensation]%20where%20''%20=
%20‘

[Route("names/{when}")]

[HttpGet]

public IEnumerable<string> Names(string when) {

var ret = new List<string>();

using (var cmd = createCommand()) {

cmd.CommandText =

"SELECT [Event] FROM [MEvt] " +

$"WHERE [WHEN] >= '{when}';";

using (var reader = cmd.ExecuteReader()) {

while (reader.Read())

ret.Add(reader.GetString(0));

} }

return ret; }

http://localhost:9000/api/data/names/01-jan-2009' union all SELECT [name] FROM [WebAppDatabase4].[sys].[Tables] where '' =
http://localhost:9000/api/data/names/01-jan-2009' union all SELECT CONCAT([Executive], '-', [Compensation], '-', [Amount]) FROM [WebAppDatabase4].[dbo].[ExecutiveCompensation] where '' =

DMZ

Separate web server from public
internet with a firewall. Open ports
80,443 only

Separate web server from other
corporate asset with a firewall

 Open a pin hole for SQL traffic

 Single IP to single IP on a single port

SQL profiler monitors the traffic from
the DMZ to your data

Public
Internet

DMZ

Web
Server

Secured
Resources

Data

Workstation

HTTP SQL

SQL SERVER PROFILER

Monitors traffic to a SQL Server

Can be run from any client and see all traffic to the SQL server

You can see the URL parameter was just appended to the SQL statement

OBJECT-RELATIONAL MAPPING (ORM)

Entity Framework is the most popular ORM
for .NET

Linq-To-Sql builds pre-compiled queries that
are parametrized

They cannot be altered at runtime by user
input or otherwise

Simple POCO objects represent tuples in
relationships (tables).

public class MonumentalEvent

{

public int Id

{ get; set; }

public DateTime When

{ get; set; }

public string Event

{ get; set; }

}

EF, CONSOLE WEB APPLICATION 5
Add additional nuget packages
 EntityFramework

Add an ADO.NET Entity Data Model
 Choose EF Designer from Database

Select the MonumentalEvents table
 A DbContext with one DbSet will be created

Create a ApiController for the data

Use Linq to pull back all events that starts with
the string prefix provided

[Route("names/{prefix}")]

[HttpGet]

public IEnumerable<string> Names(string prefix)

{

using (var db = new Entities())

{

var ret = db.MonumentalEvents.

Where(me => me.Event.StartsWith(prefix)).

Select(me => me.Event);

return ret.ToArray();

}

}

EF SQL PROFILE

Trace Entity Framework’s Linq-To-Sql query

It is parameterized

Parameter is strongly typed

Binding the parameter will not alter the type
of statement

Therefore, SQL injection cannot be
performed!

exec sp_executesql

N'SELECT [Extent1].[Event]

AS [Event]

FROM [dbo].[MonumentalEvents]

AS [Extent1]

WHERE [Extent1].[Event]

LIKE @p__linq__0

ESCAPE ''~''',

N'@p__linq__0 varchar(8000)',

@p__linq__0=

'q'' union all select 10%';

RULES FOR WEB APPLICATION DEVELOPMENT,
REDUX

1. Expose as little as possible. You can always expose more later if required.

2. Beware of exposing your businesses' core intellectual property

3. Do not add code to your site if you do not understand it. Examples are designed to get you started but
those examples not to play it safe.

4. Turn on protection (TLS, authentication, authorization, etc…) as soon as possible. This will effect negatively
developer productivity, but there is rarely time to add it later.

5. Create a non-interactive OS user to execute the site and only grant it the minimum privileges require to
run your site. Generally read and execute on a few directories.

6. Assume whoever will support the application will be less skilled and knowledgeable than you. Companies
spend less on maintenance than initial capital project.

7. Determine if your application will be supported by a software developer or a web master. Use IIS to give
your web master flexibility via configuration.

8. Never add a back-door. They rarely get shut later and often leak more functionality than intended.

HAPPY CODING Open Web Application Security

Project

