

Raspbian & Eclipse

RASPBIAN 12C

- Raspbian does not install with I2C enabled
- Follow these steps to enable: <u>http://ozzmaker.com/i2c/</u>
- Use i2cdetect to read all the slave addresses
 - 0x6A for the gyroscope and accelerometer
 - 0x1C for the magnetometer
 - 0x77 for the pressure sensor

pi@raspberrypi2:~ \$ sudo i2cdetect -y 1

BAROMETRIC SENSOR

- Bosch BMP280 digital pressure sensor, https://ae-bst.resource.bosch.com/media/tech/media/datasheets/BST-BMP280-DS001-19.pdf
- BerryIMU breakout board, <u>http://ozzmaker.com/berryimu-quick-start-guide/</u>
- I²C slave device on address 0x77
- ID register 0xD0 contains the chip identification number chip_id[7:0], 0x58

- Pressure range 300 to 1100 hPa (equiv. to +9000...-500 m above/below sea level)
 - One hectopascal = 0.02953 inches of mercury
- Package 8-pin LGA metal-lid Footprint: 2.0 × 2.5 mm, height: 0.95 mm
- Temperature coefficient offset 1.5 Pa/K, equiv. to 12.6 cm/K (25 ... 40°C @900hPa)
- Digital interfaces I²C (up to 3.4 MHz)
 SPI (3 and 4 wire, up to 10 MHz)

PYTHON INITIALIZE I2C BUS

- Create a file .py
- Open the I2C bus
 - System Management Bus (smbus) is derivative of I²C for PC power
 - https://pypi.org/project/smbus2/
- Read from bus for the slave address 0x77
 - The product id register, 0xD0
 - It should be0x58 (88 decimal)


```
import smbus
# Get I2C bus
bus = smbus.SMBus(1)
#BMP280 address, 0x77
   Read data back from 0xD0,
   One byte
b1 = bus.read_i2c_block_data(0x77, 0xD0, 1)
print(b1)
```

READ PRESSURE

- Add to .py file
- Set Configuration and Control Measurement registers
- Read 19-bits of pressure data
- Convert to inches or mercury
 - Why is the value off by a little?
 - Trim and Temperature


```
#Select Configuration register, 0xF5(245)
# 0 - I2C, # 2,3,4 - IIR filter, # 5,6,7 - tstandby, Stand_by time = 0.5 ms
bus.write_byte_data(0x77, 0xF5, 0x08)
#Select Control measurement register, 0xF4(244)
# 0,1 - Power Mode, Forced mode, # 2,3,4 - Oversample pressure x8
#5,6,7 - Oversample temp x1
bus.write_byte_data(0x77, 0xF4, 0x32)
time.sleep(0.5)
# Read data back from 0xF7(247), 8 bytes
# Pressure MSB, Pressure LSB, Pressure xLSB
data = bus.read_i2c_block_data(0x77, 0xF7, 3)
print(data);
```

MAGNETOMETER

- Same STµ LSM9DS1, <u>3D digital linear</u> <u>acceleration sensor</u>, <u>a 3D digital</u> <u>angular rate sensor</u>, <u>and a 3D digital</u> <u>magnetic sensor</u>
- Same BerryIMU breakout board, http://ozzmaker.com/berryimu/
- I²C slave device on address 0x1C
- WHO_AM_I_M register 0x0F contains 0x3D

- I2C bus
 - 400 KHz, fast mode operation
- Magnetic field full scale of ±4/±8/±12/±16 gauss
- Magnetic sensitivity, FS = ±4 gauss
 0.14 mgauss/ LSB

C++ INITIALIZE I2C BUS

- Create a file .c
 - Include i2c-dev.h header file
- Open the I2C bus
 - As a file from devices
 - Use bus number from i2cdetect
 - Select slave device with I/O control
- Read from bus for the slave address 0x1C
 - The who am I register, 0x0F
 - It should be 0x3D
- Compile
 - gcc -o magnetometer magnetometer.c

```
#include "linux/i2c-dev.h"
const int MAG ADDRESS = 0x1C;
const int ProductId = 0x0F;
const int WhoAmIResponse = 0x3D;
//the I2C bus file handle for I/O
int file;
//open the bus device driver
char filename[20];
sprintf(filename, "/dev/i2c-%d", 1);
file = open(filename, O_RDWR);
// I/O control to set the slave address on the bus file
// in effect until file is closed or selection changed.
ioctl(file, I2C_SLAVE, MAG_ADDRESS);
//Detect if LSM9DS1is connected
int response = i2c_smbus_read_byte_data(file, ProductId);
if (response == WhoAmIResponse) printf("LSM9DS1 detected");
```

ECLIPSE

- type filter text Settings ♦ ∨ ♦ ∨ ▼ ⊕ Resource Tool Settings Build Steps Build Artifact Binary Parsers Builders □ C/C++ Build 🗏 🐯 GCC C Compiler Libraries (-I) Dialect pigpio **Build Variables** Preprocessor Environment Symbols Logging Includes Tool Chain Editor Optimization ⊕ C/C++ General Debugging Warnings Project References Miscellaneous Refactoring History S GCC C Linker Run/Debug Settings General Library search path (-L) Libraries Miscellaneous Shared Library Settings ? OK Cancel
- Open Perspectives
 - Debug and C/C++

CREATE NEW C++ PROJECT

- File -> New -> C++ Project
- Name it Magnetometerlc
- Choose "Hello World" project type and Linux GCC toolchain
- Finish
- Delete the file in the src folder
- Download all the files from <u>https://ldrv.ms/f/s!Ar3pO7_GhJY9h</u> OttE8IIFGsVOuS5VA
- Place the files in the src folder and refresh the project

Starting LSM9DS1

Detected Magnetometer.

Magnetometer Initialized...

x: -31749 y: -1007 z: -1028

x: -28165 y: -1007 z: -1028

x: -30725 y: -1008 z: -1028

CHALLENGE #1

Slow down the output to one reading per second.

Move the magnet and determine the orientation of x, y and z axis

