
Windows 10 IoT Core & Visual Studio

 Open IoT dashboard

 Find your device on the
subnet

 Deploy and run the internet
radio sample application

 Ensure you can hear channel
9

Broadcom J8

Connector

Ozzmaker

GPIO 23 16 DRDY_M

GPIO 24 18 INT1_A_G

DRDY_M is only required for the

magnetometer3 application. We will not try

this application in class.

Your board is a

different revision &

layout

Background Application

 UWP but no UI

 class StartupTask : IBackgroundTask

 Package Deployment

 Declaration: Background Tasks

 Assembly executed by svchost.exe

Foreground Application

 UWP must be foreground to run

 partial class App : Application

 Package Deployment

 Declaration: none

 XAML

Choose Package->Capability->“Low Level” to use .NET GPIO libraries. Choose “Low

Level Device” if you intend to write your own device driver instead. It allows IOCTLs. You

may need to hand edit the declarations into the package XML.

 Must target at least Anniversary
edition to work and v1803 for full
functionality

 Compile with ARM instructions

 Advanced Build Settings

 C# 7.3 compiler has some new key
words and improved code
generation

 Arithmetic checks because you will
like have some math

This is cross platform

development

 Use project Deploy options to
side-load code

 Read the package file and deploys
any missing sub-packages

 Use Remote Machine debugging
(not Device debugging)

 Find button will search local
subnet for Raspberry Pi’s.

 Debugging & Deployment
requires: wired VS & Pi (no Wi-Fi)

 Create a new Background
Application IoT in VS2017
(https://docs.microsoft.co
m/en-us/windows/iot-
core/develop-your-
app/backgroundapplicati
ons)

 Add project reference to
Windows IoT Extensions for
the UWP

 Find the I2C bus

 Open the I2cDevice for the
slave address

 400 kHz bus speed

// Get a selector string that will return all I2C controllers on the
system

string allIc2Controllers = I2cDevice.GetDeviceSelector();

// Find the I2C bus controller device with our selector string

var discoveredI2cDevices =

await DeviceInformation.FindAllAsync(allIc2Controllers);

var discoveredI2cDevice = discoveredI2cDevices[0].Id;

// Create I2cDevices with our selected bus controller and I2C settings

var i2cConnectionSettings = new I2cConnectionSettings(slaveAddress)

{

BusSpeed = I2cBusSpeed.FastMode, // Enable 400kHz I2C bus speed

};

// Create I2cDevices with our selected bus controller and I2C settings

var i2cDevice = await I2cDevice.FromIdAsync(

discoveredI2cDevice, i2cConnectionSettings);

https://docs.microsoft.com/en-us/windows/iot-core/develop-your-app/backgroundapplications

 Create Blank UWP Application

 Add reference to Windows IoT Extensions
for the UWP

 Select package capability Low Level

 Program a GPIO pin for input
 Fire an event when signal goes high

 Event thread taken from thread pool

 Better performance than polling

 May need to write device driver if time
critical

//fire an event when the data ready pin goes
high

drdyMPin = EnableInterruptMonitor(DRDY_M,

InterruptDrdyM,

GpioPinDriveMode.InputPullDown);

while (ReadData().HasValue) ;

/// <summary>

/// Receive the interrupt event that

/// data is ready

/// </summary>

/// <param name="sender">the pin</param>

/// <param name="args">the event</param>

protected void InterruptDrdyM(GpioPin sender,
GpioPinValueChangedEventArgs args) {

if (drdyMPin.Read() == GpioPinValue.High)

{

var newReading = ReadData();

NewReading?.Invoke(this, newReading);

} }

 Mount Raspberry Pi on a bobble head Santa.
 Place an inertial measurement unit in Santa’s head.

 Connect a speaker to the Pi

 Use gyroscope & accelerometer to determine when the
head is bobbing.

 Play a Jingle Bells with the tempo based on the angular
velocity and linear acceleration.
 Replace with MP3 of your choice

Gyrosc

ope

Accelerometer

 STµ LSM9DS1, 3D digital linear
acceleration sensor, a 3D digital
angular rate sensor, and a 3D digital
magnetic sensor

 Same BerryIMU breakout board,
http://ozzmaker.com/berryimu/

 I2C slave device on address 0x6A

 WHO_AM_I register 0x0F contains
0x68

 I2C bus

 400 KHz, fast mode operation

 Linear acceleration full scale of
±2g/±4g/±8/±16 g

 Angular rate of ±245/±500/±2000
degrees per second.

https://www.st.com/content/ccc/resource/technical/document/datasheet/1e/3f/2a/d6/25/eb/48/46/DM00103319.pdf/files/DM00103319.pdf/jcr:content/translations/en.DM00103319.pdf
http://ozzmaker.com/berryimu/

 Data ready pin transitioning to high
causes event to fire

 Read status register

 Determine what data is read

 Read it

 Fire event for gyroscope data

 Fire different event for accelerometer
data

var status = (StatusRegister)ReadByteFrom(STATUS_REG);

if (status.HasFlag(StatusRegister.GDA))

{

var gyroReading = GetGyroscopeReadings();

NewGyroscopeReading?.Invoke(this, gyroReading);

}

if (status.HasFlag(StatusRegister.XDA))

{

var accelmeterReading =

GetAccelerometerReadings();

NewAccelerometerReading?.Invoke(this,

accelmeterReading);

}

if (status.HasFlag(StatusRegister.TDA))

DiscardTemperatureData();

 Play an mp3 file distributed with the
package

 Set as the source to the player

 Alter the playback session’s rate based
on head motion

var mediaPlayer =

new MediaPlayer();

var audioPath = new Uri(

@"ms-appx:///JingleBells.mp3");

var source = MediaSource.

CreateFromUri(audioPath);

mediaPlayer.Source = source;

mediaPlayer.Play();

mediaPlayer.PlaybackSession.

PlaybackRate = value;

If time allows

 Compiler the settings required for
most GNU tools are as follows:

 march=armv6

 mfpu=vfp

 mfloat-abi=hard

 Produce code for armv6 specific
instructions

 vector floating point instructions

https://wiki.debian.org/ArmHardFloatPort

 Linux GPIO statement

 GPIO interfaces in the kernel

 Universal File System

 /sys/class/gpio

 echo 23 > /sys/class/gpio/export

 ls –lh /sys/class/gpio/gpio23

 hardware pin can turn on interrupts by
writing your desired setting into the
edge file

 Another example

 wiringPi

 #include <wiringPi.h>

 Arduino clone

 Functions

 Requires Superuser

 Assumes ownership of all Pi hardware:
SPI, IC2, GPIO, UART, etc…

 Pigpio Library

 Requires Superuser

 Polling, not interrupt based, uses
timers

 Several versions including a daemon

https://www.kernel.org/doc/Documentation/gpio/gpio.txt
https://www.linux.com/learn/beaglebone-black-how-get-interrupts-through-linux-gpio
https://stackoverflow.com/questions/41420918/how-to-set-gpio-falling-edge-interrupt-in-linux
http://wiringpi.com/reference/core-functions/
http://abyz.me.uk/rpi/pigpio/

 SSL is turned off as installed

 sudo service ssh start

 sudo systemctl enable ssh

 Then SSH will work (no GUI, of course)

 A pre-installed vnc-server

 Configuration utility enables

 Requires a purchased commercial license to use

