
Windows 10 IoT Core & Visual Studio



 Open IoT dashboard

 Find your device on the 
subnet

 Deploy and run the internet 
radio sample application

 Ensure you can hear channel 
9



Broadcom J8 

Connector

Ozzmaker

GPIO 23 16 DRDY_M

GPIO 24 18 INT1_A_G

DRDY_M is only required for the 

magnetometer3 application. We will not try 

this application in class.

Your board is a 

different revision & 

layout



Background Application

 UWP but no UI

 class StartupTask : IBackgroundTask

 Package Deployment

 Declaration: Background Tasks

 Assembly executed by svchost.exe

Foreground Application

 UWP must be foreground to run

 partial class App : Application

 Package Deployment

 Declaration: none

 XAML

Choose Package->Capability->“Low Level” to use .NET GPIO libraries.  Choose “Low 

Level Device” if you intend to write your own device driver instead. It allows IOCTLs. You 

may need to hand edit the declarations into the package XML.



 Must target at least Anniversary 
edition to work and v1803 for full 
functionality

 Compile with ARM instructions

 Advanced Build Settings

 C# 7.3 compiler has some new key 
words and improved code 
generation

 Arithmetic checks because you will 
like have some math

This is cross platform 

development



 Use project Deploy options to 
side-load code

 Read the package file and deploys 
any missing sub-packages

 Use Remote Machine debugging 
(not Device debugging)

 Find button will search local 
subnet for Raspberry Pi’s.

 Debugging & Deployment 
requires: wired VS & Pi (no Wi-Fi)



 Create a new Background 
Application IoT in VS2017 
(https://docs.microsoft.co
m/en-us/windows/iot-
core/develop-your-
app/backgroundapplicati
ons) 

 Add project reference to 
Windows IoT Extensions for 
the UWP

 Find the I2C bus

 Open the I2cDevice for the 
slave address

 400 kHz bus speed

// Get a selector string that will return all I2C controllers on the 
system

string allIc2Controllers = I2cDevice.GetDeviceSelector();

// Find the I2C bus controller device with our selector string

var discoveredI2cDevices = 

await DeviceInformation.FindAllAsync(allIc2Controllers);

var discoveredI2cDevice = discoveredI2cDevices[0].Id;

// Create I2cDevices with our selected bus controller and I2C settings

var i2cConnectionSettings = new I2cConnectionSettings(slaveAddress)

{

BusSpeed = I2cBusSpeed.FastMode, // Enable 400kHz I2C bus speed

};

// Create I2cDevices with our selected bus controller and I2C settings

var i2cDevice = await I2cDevice.FromIdAsync(

discoveredI2cDevice, i2cConnectionSettings);

https://docs.microsoft.com/en-us/windows/iot-core/develop-your-app/backgroundapplications


 Create Blank UWP Application

 Add reference to Windows IoT Extensions 
for the UWP

 Select package capability Low Level

 Program a GPIO pin for input
 Fire an event when signal goes high

 Event thread taken from thread pool

 Better performance than polling

 May need to write device driver if time 
critical

//fire an event when the data ready pin goes 
high

drdyMPin = EnableInterruptMonitor(DRDY_M,

InterruptDrdyM,

GpioPinDriveMode.InputPullDown);

while (ReadData().HasValue) ;

/// <summary>

/// Receive the interrupt event that 

/// data is ready

/// </summary>

/// <param name="sender">the pin</param>

/// <param name="args">the event</param>

protected void InterruptDrdyM(GpioPin sender, 
GpioPinValueChangedEventArgs args) {

if (drdyMPin.Read() == GpioPinValue.High)

{

var newReading = ReadData();

NewReading?.Invoke(this, newReading);

} }



 Mount Raspberry Pi on a bobble head Santa. 
 Place an inertial measurement unit in Santa’s head.

 Connect a speaker to the Pi

 Use gyroscope & accelerometer to determine when the 
head is bobbing. 

 Play a Jingle Bells with the tempo based on the angular 
velocity and linear acceleration.
 Replace with MP3 of your choice

Gyrosc

ope

Accelerometer



 STµ LSM9DS1, 3D digital linear 
acceleration sensor, a 3D digital 
angular rate sensor, and a 3D digital 
magnetic sensor

 Same BerryIMU breakout board, 
http://ozzmaker.com/berryimu/

 I2C slave device on address 0x6A

 WHO_AM_I register 0x0F contains 
0x68

 I2C bus

 400 KHz, fast mode operation

 Linear acceleration full scale of 
±2g/±4g/±8/±16 g

 Angular rate of ±245/±500/±2000 
degrees per second.

https://www.st.com/content/ccc/resource/technical/document/datasheet/1e/3f/2a/d6/25/eb/48/46/DM00103319.pdf/files/DM00103319.pdf/jcr:content/translations/en.DM00103319.pdf
http://ozzmaker.com/berryimu/


 Data ready pin transitioning to high 
causes event to fire

 Read status register

 Determine what data is read

 Read it

 Fire event for gyroscope data

 Fire different event for accelerometer 
data

var status = (StatusRegister)ReadByteFrom(STATUS_REG);

if (status.HasFlag(StatusRegister.GDA))

{

var gyroReading = GetGyroscopeReadings();

NewGyroscopeReading?.Invoke(this, gyroReading);

}

if (status.HasFlag(StatusRegister.XDA))

{

var accelmeterReading = 

GetAccelerometerReadings();

NewAccelerometerReading?.Invoke(this, 

accelmeterReading);

}

if (status.HasFlag(StatusRegister.TDA))

DiscardTemperatureData();



 Play an mp3 file distributed with the 
package

 Set as the source to the player

 Alter the playback session’s rate based 
on head motion

var mediaPlayer = 

new MediaPlayer();

var audioPath = new Uri(

@"ms-appx:///JingleBells.mp3");

var source = MediaSource.

CreateFromUri(audioPath);

mediaPlayer.Source = source;

mediaPlayer.Play();

mediaPlayer.PlaybackSession.

PlaybackRate = value;



If time allows



 Compiler the settings required for 
most GNU tools are as follows: 

 march=armv6 

 mfpu=vfp 

 mfloat-abi=hard 

 Produce code for armv6 specific 
instructions

 vector floating point instructions

https://wiki.debian.org/ArmHardFloatPort


 Linux GPIO statement

 GPIO interfaces in the kernel

 Universal File System

 /sys/class/gpio

 echo 23 > /sys/class/gpio/export

 ls –lh /sys/class/gpio/gpio23

 hardware pin can turn on interrupts by 
writing your desired setting into the 
edge file 

 Another example

 wiringPi

 #include <wiringPi.h>

 Arduino clone

 Functions

 Requires Superuser

 Assumes ownership of all Pi hardware: 
SPI, IC2, GPIO, UART, etc…

 Pigpio Library

 Requires Superuser

 Polling, not interrupt based, uses 
timers

 Several versions including a daemon

https://www.kernel.org/doc/Documentation/gpio/gpio.txt
https://www.linux.com/learn/beaglebone-black-how-get-interrupts-through-linux-gpio
https://stackoverflow.com/questions/41420918/how-to-set-gpio-falling-edge-interrupt-in-linux
http://wiringpi.com/reference/core-functions/
http://abyz.me.uk/rpi/pigpio/


 SSL is turned off as installed

 sudo service ssh start

 sudo systemctl enable ssh

 Then SSH will work (no GUI, of course)

 A pre-installed vnc-server

 Configuration utility enables

 Requires a purchased commercial license to use


